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Abstract

The connection between polynomials and first order optimization methods was first explored by [HS+52], and
since then several works have built on this connection. In this report, we overview some of these works focusing
on the main mathematical ideas and tools they have used. We focus on the average case analysis introduced by
[PS20] and present our contributions in the context of acceleration in the average sense for non-strongly convex
functions.

These contributions have been made under the supervision of Gauthier Gidel, Fabien Pedregosa, Courtney
Paquette and Damien Scieur.

1 Introduction
The analysis of the average complexity of algorithms is an old feature of computer science. Notably, the quicksort
algorithm presents worst-case complexity of O(n2), but average case complexity of O(n log n) and is empirically
faster than HeapSort or MergeSort. Average case complexity also drives much of the decisions made in cryptography
[BT06]

The average case analysis of optimization algorithm has stayed an unexplored problem for long because of the
ill-defined notion of a distribution over the optimization problems. Recently though, [PS20] has derived a framework
to systemically evaluate the complexity of first order methods on distributions of quadratic minimization problems
by tying the average of the residuals to the expected spectral distribution of the problem, which is a well studied
object on Random Matrix Theory.

[Paq+20] has expanded on this work by introducing a new generative model for the problems and deriving
the average complexity of the Nesterov Accelerated Method on a particular distribution and showing the strong
concentration of the metrics around their expected value.

[SP20] has shown that for a strongly convex problem with eigenvalues supported on a contiguous interval, the
optimal average case complexity is asymptotically equal to the one given by the Polyak Heavy Ball method in the
worst-case.

In the non-strongly convex case, optimization drastically slows down, as gradient descent presents worst case
convergence in Θ( 1

n ) and Nesterov is Θ( 1
n2 ), which matches a lower bound on worst case convergence up to a constant

factor.
We believe the non strongly convex, worst case scenario is very pessimistic, especially in high dimensions where

the problem has enough degrees of freedom to be highly adversarial [citation of the tutorial here+ quotation marks].
Further, as we are dealing with the sublinear convergence of large scale algorithms, accelerated sublinear rates may
be the difference between problems that are computationally feasible and those who are not.
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A drawback on average case analysis is that it relies, à priori, on a much stronger hypothesis, the shape of the
expected spectral distribution as we’ll see, when compared to the worst case analysis, that relies only on the values of
the edges of this distribution.

We show that the main aspects of the convergence, which from an optimization point view are the asymptotic
rates, are determined by a low dimensional characterization of the distribution. Parametrizing the distributions in
terms of the concentration of the eigenvalues around the edges, allow us to effectively determine the precise rates
for all continuous distributions supported in an interval ]0, L[,

We can then compare algorithms robustly, allowing an effective choice of algorithms under a more realistic lack
of information on the eigenspectra.

In our contributions, we first introduce the Generalized Chebyshev Method, and show the it’s rates of GD,
Nesterov under the concentration hypothesis, then compare these algorithms on synthetic and real data.

Figure 1: The average case rates for non-strongly problems is determined by the eigenvalue concentration around
the edges of the support

Organization In sections 2 we introduce some works built on the connection between first order methods and
polynomials. Section 3 overviews [PS20; SP20; DPS20; Paq+20; PP21; Paq+21] which constitute the main body of
work on the average case analysis. Sections 4,5 and 6 center on our contributions.

2 Polynomial Abstraction
In this section we introduce the connection between polynomials and first order methods, highlighting how the
Chebyshev Semi-Iterative Method [GV61] and the Polyak Heavy Ball method [Pol64], and the average-case analysis
framework for random quadratic problems [PS20].

The main result is Theorem 3.1, which relates the expected error with other quantities that will be easier to
manipulate, such as the residual polynomial. This is a convenient representation of an optimization method that
will allow us in the next section to pose the problem of finding an optimal method as a best approximation problem
in the space of polynomials.

Let H ∈ Rd×d be a random symmetric positive-definite matrix and x? ∈ Rd a random vector. These elements
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determine the following (random) quadratic minimization problem

min
x∈Rd

{
f(x)

def
=

1

2
(x−x?)>H(x−x?)

}
. (OPT)

Our goal is to quantify the expected error E‖xt − x?‖, where xt is the t-th update of a first-order method starting
from x0 and E is the expectation over the random H,x0,x

?.

Remark 1. The expectation in the expected error E‖xt − x?‖2 is over the inputs and not over any randomness of
the algorithm, as would be common in the stochastic literature. In this paper we will only consider deterministic
algorithms.

To solve OPT, we will consider first-order methods. These are methods in which the sequence of iterates xt is in
the span of previous gradients, i.e.,

xt+1 ∈ x0 + span{∇f(x0), . . . ,∇f(xt)} . (1)

This class of algorithms includes for instance gradient descent and momentum, but not quasi-Newton methods, since
the preconditioner could allow the iterates to go outside of the span. Furthermore, we will only consider oblivious
methods, that is, methods in which the coefficients of the update are known in advance and don’t depend on previous
updates. This leaves out some methods that are specific to quadratic problems like conjugate gradient.

From First-Order Method to Polynomials. There is an intimate link between first order methods and
polynomials that simplifies the analysis on quadratic objectives. Using this link, we will be able to assign to each
optimization method a polynomial that determines its convergence. The next Proposition gives a precise statement:

Proposition 2.1. [HS+52] Let xt be generated by a first-order method. Then there exists a polynomial Pt of degree
t such that Pt(0) = 1 that verifies

xt − x? = Pt(H)(x0 − x?) . (2)

Remark 2. If the first-order method is further a momentum method, i.e.:

xt+1 = xt +mt(xt − xt−1) + ht∇f(xt) (3)

We can determine the polynomials by the recurrence P0 = 1 and:

Pt+1(λ) = (1 +mt)Pt(λ) + htλPt(λ)−mtPt−1(λ) (4)

We note that while most popular F.O.M’s can be posed a momentum method, Nesterov cannot.

Following [Fis96], we will refer to this polynomial Pt as the residual polynomial.

Example 1 (Chebyshev Semi-iterative method). We can easily derive a worst-case optimal algorithm for the
||xt − x?|| metric, when H is restricted to be a positive definite matrix. From the proposition above, the task of
designing an optimal method is equivalent to solving a polynomial approximation problem:
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Theorem 3 ([MG16]). The solution to :

P ?t = argmin
deg(Pt)=t,Pt(0)=1

max
λ∈[`,L]

P 2
t (λ) (5)

Is:
P cheb
t (λ) :=

Tt(σ(λ))

Tt(σ(0))

Where σ : [`, L]→ [−1, 1]:

σ(λ) =
L+ `

L− `
− 2

L− `
λ (6)

Is the linear map between the domains and Tt is the Chebyshev Polynomial of the First Kind.

Proof. The Chebyshev polynomial Tt are such that ∃λ1 ≤ . . . ≤ λt+1, arg maxx∈[−1,1] |Tt(x)| = |Tt(λi)| = 1, and
Pt(λi) = (−1)t+i+1, that is the polynomials oscilate between −1 and 1 which are it’s maximal points in absolute
value.

The same is true for Tt(σ(.)) and the interval [`, L] from the definition of σ.
Suppose Rt is a residual polynomial of same degree as Pt and smaller absolute value, and Qt := Pt −Rt. By this

assumption sign(Qt(λ)) = (−1)t+i+1, i.e. it oscilates above and below 0 at λi, and thus Qt has at least t+ 1 zeros,
which is an absurd because it has degree at most t.

We note this method can be derived as a special case of the one we propose in section 4
As maxx∈[−1,1] Tt(x) = 1,∀t, the convergence rate is determined by Tt(σ(0))−2 = Tt(

L+`
L−` )

−2. If ` > 0 σ(0) < −1
and luckily we have an expression for Tt outside [−1, 1]:

Tt(λ) =
1

2
[(λ+

√
λ2 − 1)t + (λ−

√
λ2 − 1)t] (7)

. Thus, considering only the first term on the right:

Tt

(
L+ `

L− `

)
≥ 1

2

L+ `

L− `
+

√(
L+ `

L− `

)2

− 1

t

(8)

=
1

2

(√
L+
√
`√

L−
√
`

)t
=

(
1−Θ

(
1√
κ

))t
(9)

Which shows the dependence on the square root of the condition number κ instead of the condition itself as is the
case of gradient descent.

4



Figure 2: Chebyshev polynomials of the first-kind Tt of different degrees. Note the exponential behaviour, wrt t,
outside [−1, 1]

The difference between the behaviour outside and inside [−1, 1] gives an intuitive insight into the contrast of
linear and sublinear convergence under strong convexity and without it respectively. This exponential behaviour
outside of an interval is not particular to the Chebyshev polynomials, so in general if ` > 0, Pt(σ(0)) behaves like an
exponential and like a polynomial otherwise.

Example 2 (Polyak Heavy Ball). Consider the method, and the polynomials Pt, generated with constant momentum
and gradient steps, i.e. equation 4 with mt = m, ht = h. Then, polynomials Pt can be written [Ped20]:

Pt(λ) = mt/2

(
2m

1 +m
Tt(σ(λ))− m− 1

1 +m
Ut(σ(λ))

)
(10)

Where Tt and Ut are the Chebyshev polynomials of the first and second kind respectively and:

σ(λ) =
1

2
√
m

(1 +m− hλ) (11)

We want to upper bound the expression in eq. 10. We know that for x ∈ [−1, 1]:

|Tt(x)| ≤ 1 and |Ut(x)| ≤ t+ 1

To use this property, we need to have max
λ∈[`,L]

|σ(λ)| ≤ 1, which is equivalent to:

(1−
√
m)2

h
≤ ` ≤ (1 +

√
m)2

h
(12)

0 ≤ m ≤ 1 and h ≤ 2(1 +m)

L
(13)

Inside this region we have:

max
λ∈[`,L]

Pt(λ) ≤ mt/2

(
1 +

1−m
1 +m

t

)
=: qt (14)

To minimize the upper bound qt, we’ll want to minimize m while staying inside the region. This will give:

m =

(√
L−
√
`√

L+
√
`

)2

≤ 1 and h =

(
2√

L+
√
`

)2
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Which are the parameters of the Polyak Heavy Ball method. This gives:

rPolyak
t ≤

(√
L−
√
`√

L+
√
`

)2(
1 +

2
√
L`

L+ `
t

)
(15)

Which corresponds asymptotically to the square root of the condition number acceleration proved in [Pol64].
Note that while this is one of the tighter bounds we have on Polyak, a strict exponential decay was proven recently

in [WLA21].

2.1 Acceleration without momentum
The polynomial abstraction also shows we can achieve "optimal" convergence without momentum.

It is easy to see that the polynomial associated to the method:

xt+1 = xt − ht∇f(xt) (16)

Is:
Pt(λ) = (1− htλ)(1− ht−1λ) . . . (1− h0λ) (17)

So it’s roots are 1/hi.
We also know that the roots of the t-th degree of the residual chebyshev polynomial PCheb

t are [Ped21]:

λi =
1

2
(L+ `) +

1

2
(L− `) cos

(
π(i+ 1/2)

t

)
(18)

By setting hi = λi, for i ≤ t, the polynomial in eq. 17 matches the Chebyshev polynomial at iteration t. This means
we can match, for a fixed number iterations, the optimal worst case performance without momentum. This is called
the Young Method [You53]

Figure 3: Empirical comparison between Young, Chebyshev method and gradient descent. Note that the vanilla
Young method diverges in practice for low values of ` Taken from [Ped21]

This is an unstable algorithm in practice, as the number of iterations grow and ` goes to 0, because the final
steps will converge to 1

` , and small numerical errors in ` will lead to divergence.
[LF71], and more recently [AGZ21] have shown that this instability can be reduced with a proper permutation of

the Chebyshev steps.
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Definition 1. Let (σ2t)t∈N be a family of tuples of variable length s.t:

σ1 = [1] (19)
σ2t = interlace(σt, 2t+ 1− σt) (20)

interlace([a1, . . . , an],(b1, . . . , bn]) = [a1, b1, a2, b2, . . . , an, bn] (21)

For instance:
σ8 = [1, 8, 4, 5, 2, 7, 3, 6] (22)

We define the fractal Chebyshev schedule as (hσT (t))t=1,...,T , where ht = 1
λt
, with λ as in eq. 18

If we consider the gradient containing additive noise, may it be from a stochastic or numerical source:

xt+1 = xt − ht∇f(xt) + ηt (23)

The error at each step depends on "partial polynomials":

xt − x? = P0:t−1(H)(x0 − x?) +

t∑
t′=2

Pt′:t−1(H)ηt′−1 (24)

Pi:j(H) =

j∏
τ=i

(I − htH) (25)

[AGZ21] shows that for the Fractal Chebyshev Polynomials:

t∑
t′=s

sup
λ∈[`,L]

|Pt′:t| = O(κ̂1+ 1
ln 4 log κ̂) = o(κ̂1,73) (26)

Where κ̂ = L
` . This bound is independent on t, so if we consider a bound like ||ηt|| < ε, we have a time independent

bound on the error. Though a lower bound on the regular schedule unstability is not shown, eq. 26 and experiments
suggest the much greater stability of the fractal schedule

Figure 4: Comparison between stabilized and unstabilized versions of Young’s method. Taken from [AGZ21]
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Cyclic step sizes [Gou+21; Oym21] showed provable acceleration instead with cyclical gradient steps in the
setting where:

Λ := Sp(H) ⊂ [`1, L1] ∪ [`2, L2] (27)

[Gou+21] does so with the concept of equioscilation, which is a generalization of the ideas in the proof of theorem 3.

Definition 2. A polynomial Pt equioscilates on a set Λ if Pt(0) = 1 and ∃λ1 < . . . < λt+1 s.t.:

Pt(λi) = (−1)i max
x∈Λ
|Pt(x)| (28)

Consider the problem:
min

Pt∈Rt[X]
max
x∈Λ
|Pt(x)| s.t. Pt(0) = 1 (29)

For a general set Λ ⊂ R.We can consider equivalently the solution to:

max
Pt∈Rt[X]

Pt(0) s.t. sup
x∈Λ
|Pt(x)| = 1 (30)

And divide the polynomial by it’s value on 0.

Let σK be a degree K polynomial s.t supx∈Λ |σK(x)| = 1. We consider solutions of the type:

Pt(λ) =
Tn(σK(λ))

Tn(σK(0))
(31)

With t = Kn. Note that we are only able to define these polynomials with degrees in intervals of size K. This is at
the origin of the cyclic step sizes.

It’s easy to see that the minimum solution in this class happens when σK equioscilates in Λ, according to def. 2.
[Gou+21] further shows this solution is global, in the sense of eq. 29 if σ−1

K ([−1, 1]) = Λ̄.
In general such a solution is not analytically described: we can find an approximation to the optimal K degree

polynomial, but we can’t show that the degree itself is optimal
When Λ is as in eq. 27 and L2 − `2 = L1 − `1, we can find a globally optimal solution with:

ρ =
L2 + `1
L2 − µ1

, R =
`2 − L1

L2 − `1
(32)

m =

(√
ρ2 −R2 −

√
ρ2 − 1√

1−R2

)2

(33)

σ2(λ) = 2

(
1 +m

2
√
m

)(
1− λ

L1

)(
1− λ

`2

)
− 1 (34)

We now consider the recurrence generating the optimal polynomials:

P2(n+1)(λ) :=
Tn+1(σk(λ))

Tn+1(σk(0))
= 2σk(λ)

Tn(σk(λ))

Tn(σk(0))

Tn(σk(0))

Tn+1(σk(0))︸ ︷︷ ︸
an

−Tn−1(σk(λ))

Tn+1(σk(0))

Tn−1(σk(0))

Tn+1(σk(0))︸ ︷︷ ︸
bn

(35)
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Figure 5: Graph for σ2. Note the optimality conditions are observed

We can derive a method that tracks these polynomials. [Gou+21] shows that an iteration of the type:

c =

√
ρ2 −R2

1−R2
(36)

ωt =

(
1− 1

4c2
ωt−1

)−1

(37)

ht =

{ ωt
L1

if t = 2k
ωt
`2

if t = 2k + 1
(38)

xt+1 = xt − ht∇f(xt) + (ωt − 1)(xt − xt−1) (39)

With ω0 = 2, follows xt − x? = Pt(H)(x0 − x?). Though we can define an all-time optimal method, [Gou+21]
focuses on an asymptotic variant.
Lemma 4 tells us an, bn have a limit a∞, b∞, The polynomials who follow recurrence:

P̃t(λ) = 2a∞σK(λ)P̃t−K − b∞P̃t−2K(λ) (40)

Are then produced by an iteration like eq. 39, when ωt = ω∞ = 1 +m and have the same (optimal) asymptotic rate.
This is called the cyclic heavy ball with (cyclic) steps h1 = 1+m

L1
, h2 = 1+m

`2
The optimal asymptotic rate for a given Λ, and the optimal σK , is given by:

(σK(0)−
√
σK(0)2 − 1)

1
K (41)

These results allow us to show significant acceleration over the standard Heavy Ball method in some regimes of Λ.
Indeed when:

Λ = [`, (1 + γ)`] ∪ [L− γ`, L] (42)

The rate is (1−Θ(1))t w.r.t κ = L
` , i.e. it is independent of κ.
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Figure 6: Experimental results contrasting Polyak Heavy Ball with Cyclic heavy Ball. The different slopes in semi
log scale indicate different asymptotic convergence rates. Taken from [Gou+21]

3 Average-Case Analysis
The previous section shows the usefulness of the "polynomial abstraction". It turns out this is especially true when
considering distributions of problems, that can be represented by letting H be a random matrix.

A convenient way to describe a random matrix is through its empirical spectral distribution, which we now define.

Definition 3. (Weighted/Expected spectral distribution). Let H be a random matrix with eigenvalues
{λ1, . . . , λd}. The empirical spectral distribution of H, called µH, α, is the probability measure

µH
def
=

1

d

∑d
i=1δλi , (43)

where δλi is the Dirac delta, a distribution equal to zero everywhere except at λi and whose integral over the entire
real line is equal to one.

Since H is random, the empirical spectral distribution µH is a random measure (a random variable in the space
of measures). Its expectation over H is called the expected spectral distribution (e.s.d.) and we denote it

µ
def
= EH [µH ] . (44)

We can link the e.s.d. of H to the convergence of a first order method on the distribution of H In the following
we’ll consider x0 − x? and H to be independent, with x0 − x? sampled isotropically. This isotropic hypothesis is not
necessary and we could derive a similar analysis for more general distribution of x0 − x?.

Theorem 3.1. Let xt be generated by a first-order method associated to the polynomial Pt, µ the e.s.d. of H and
E[(x0 − x?)(x0 − x?)T ] = R2I Then we can write the convergence metrics at time step t as:

E[‖xt − x?‖2] = R2

∫
P 2
t (λ)dµ(λ) (45)

E[f(xt)− f(x?)] = R2

∫
P 2
t (λ)λdµ(λ) (46)

E[||∇f(xt)||22] = R2

∫
P 2
t (λ)λ2dµ(λ) (47)
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This shows that the polynomials are an excellent abstraction: in the following we’ll refer directly to the poly-
nomials associated to a given method and omit the R2 term associated to the initialization. We’ll simply refer to
metric l as the metric associated to the added λl term, i.e. the gradient norm is metric l = 2

Theorem 3.1 works as an infinite dimensional limit for the convergence rates. Under some assumptions, we can
show it to be a deterministic limit

Proposition 3.1. Let x0 and x? in Rd as s.t:

E[(x0 − x?)(x0 − x?)T ] = R2I (48)

E[(x0 − x?)4
i ] = O(

1

d2
) (49)

And H a random matrix s.t. it’s empirical spectral distribution converges weakly and in probability:

µH
d→∞−−−→
Pr

µ (50)

And it’s largest eigenvalue is also convergent:
λ+
H

d→∞−−−→
Pr

λ+ (51)

Then we have:
||∇f(xk)||2 d→∞−−−→

Pr
R2

∫
λ2P 2

k (λ)dµ (52)

This has been stated slightly differently in [Paq+20]. This shows that the if the data generation process scales
neatly with the dimension, the gradient, and other metrics with a slight modification to the proof, concentrates
around it’s expected value.

The hypothesis are relatively weakly, and are supported for instance by the Wishart matrices we present in
subsection 4.2

This framework is further linked to the field of orthogonal polynomials by the following proposition which
gives a construction of an optimal method w.r.t. a given distribution

Proposition 3.2. [PS20] Let P ?t be defined as

P ?t := arg minPt(0)=1

∫
P 2
t (λ)λldν(λ) (53)

then (P ?t ) is the family of residual orthogonal polynomials w.r.t. to λl+1dν

As the theory of orthogonal polynomials is often stated in terms of distributions supported in [−1, 1], we’ll often
consider σ as in eq. 6 and write our method polynomial Pt as Pt(λ) = P̃t(σ(λ)), where P̃t is a classic polynomial, i.e.
Chebyshev of the First Kind as in example 1.

This theorem further implies that the optimal first-order method is a momentum method as Favard’s theorem
[MÁ01] tells us the residual orthogonal polynomials w.r.t. a given distribution can be related through a three term
recurrence:

Pt+1(λ) = atPt(λ) + btλPt(λ) + (1− at)Pt−1(λ) (54)

Following remark 2, the optimal method is derived from this recurrence as:

xt+1 = xt + (at − 1)(xt − xt−1) + bt∇f(xt) (55)
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3.1 Universality in the Strongly Convex Case
[SP20] showed universal properties in the strongly convex case.

Let’s consider a continuous measure µ supported in [`, L],with ` > 0, corresponding to λl+1dν from proposition
3.2, with Pt it’s residual orthogonal polynomials, following eq. 54, and pt the orthonormal polynomials to the [−1, 1]

shift of µ , i.e. Pt(λ) = pt(σ(λ))
pt(σ(0)) , and pt follows:

αtpt(λ) = (λ− βt)pt−1(λ)− αt−1pt−2(λ) (56)

We can rewrite this equation as:

Pt(λ) = (σ(λ)− βt−1)
pt−1(σ(λ))

αtpt(σ(0))
− αt−1

pt−2(σ(λ))

αtpt(σ(0))
(57)

We can identify the terms such that:

1− at = −αt−1

αt

pt−2(σ(0))

pt(σ(0))
(58)

bt = − 2

αt(L− `)
pt−1(σ(0))

pt(σ(0))
(59)

Luckily, the orthonormal polynomials have useful, and universal, asymptotic properties. In appendix C we use their
weak asymptotics. Here we’ll use their ratio asymptotics:

Lemma 4 ([Rah77; MNT85]). Let pt be the orthonormal polynomial family w.r.t a continuous function supported
and strictly positive in [−1, 1].
For |λ| > 1:

lim
t→∞

pt(λ)

pt−1(λ)
= λ+

√
λ2 − 1 (60)

And letting αt, βt as in eq. 56:

lim
t→∞

αt =
1

2
lim
t→∞

βt = 0 (61)

This means that:

lim
t→∞

pt−1(σ(0))

pt(σ(0))
=

L+ `

L− `
+

√(
L+ `

L− `

)2

− 1

−1

=

√
L−
√
`√

L+
√
`

(62)

lim
t→∞

(1− at) = −
(

lim
t→∞

αt−1

αt

)(
lim
t→∞

pt−2(σ(0))

pt(σ(0))

)
= −

(√
L−
√
`√

L+
√
`

)2

(63)

lim
t→∞

bt = − 2

L− `

(
lim
t→∞

α−1
t

)(
lim
t→∞

pt−1(σ(0))

pt(σ(0))

)
= −

(
2√

L−
√
`

)2

(64)

This shows that the momentum and gradient steps converge to those of the Polyak Heavy Ball method. Just compare
the above expressions to those in example 2.

We can further show that the asymptotic rates are universal. If Pt is the residual orthogonal w.r.t. λl+1dν,
[PS20] has shown that: ∫

P 2
t (λ)λldν(λ) =

∫
Pt(λ)λldν(λ) =: rt (65)
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We can write for rt:

rt =

∫
(at + λbt)Pt−1(λ) + (1− at)Pt−2(λ)λldν(λ) = at

∫
Pt−1λ

ldµ+ (1− at)
∫
Pt−2λ

ldµ (66)

Because Pt−1 is orthogonal w.r.t. a constant function and measure λl+1dµ. Thus we have a recurrence:

rt = atrt−1 + (1− at)rt−2

r1 = 1 + b1

∫
λl+1dµ r0 = 1

The Poincaré-Perron [Pit02] states that if limt→∞ at = a∞, and at /∈ {0, 1}∀t, then the recurrence has two solution
{(r1

t ), (r
2
t )} s.t.:

lim sup
t→∞

t

√
rit = |λi| (67)

Where λi are the roots of the equation λ2 − a∞λ− (1− a∞) = 0, which are 1 and 1− a∞. Since this method is
average case optimal by hypothesis, this rate must be better than any worst case rate, the Polyak rate for instance

which we’ve shown to be
(√

L−
√
`√

L+
√
`

)2

= 1− a∞.
Thus the asymptotic rate can’t be one, and is indeed the same one given by Polyak.
This shows that, at least in an asymptotic sense, in the strongly convex setting the average case is not too

different from the worst case and that we cannot do much better than the Polyak method.

3.2 Average Case for Bilinear Games
[DPS20] has extended the average case framework for the solution of an equation:

F (x) := A(x− x?) = 0 (68)

Where A ∈ Rd×d is a real normal matrix, i.e. AAT = ATA,. The solution set to this equation is an affine
subspace X ?, s.t. we write:

dist(x,X ?) = min
v∈X?

||x− v||2 (69)

X ? = {x ∈ Rd : A(x− x?) = 0} (70)

. This generalizes the zero-sum, bilinear game setting, which can be posed as minimax problem:

min
θ1

max
θ2

l(θ1,θ2) := (θ1 − θ?1)TM(θ2 − θ?2) (71)

Where M ∈ Rdx×dy . That’s because the vector field to this game [Bal+18] is:

F (θ1,θ2) =

[
∇θ1` (θ1,θ2)
−∇θ2

` (θ1,θ2)

]
=

[
0 M

−M> 0

]
︸ ︷︷ ︸

=A

(

[
θ1

θ2

]
︸ ︷︷ ︸

=x

−
[
θ?1
θ?2

]
︸ ︷︷ ︸

=x?

) = A (x− x?) . (72)

In this case the normality of A is ensured. A first order method in this case corresponds to a sequence (xt) s.t.:

xi ∈ x0 + span({F (xj)}i−1
j=0) (73)

13



In this sense, the first order method also has an associated polynomial family Pt, with Pt(0) = 1.
Let E[(x0 − x?)(x0 − x?)T ] = R2

d I, notice the different scaling, and x0,x
? independent to A. Through a similar

procedure to theorem 3.1, we can show:

E[dist(xt,X ?)] = R2

∫
C\{0}

|Pt|2(λ)dµ(λ) (74)

Where µ is the expected spectral distribution of A.
The main difference with the minimization setting is the domain of the integral. The fact that A is not symmetric,
in contrast with H in the minimization setting, adds complex eigenvalues to be considered. Notably, theorem 8 is
not valid in this scenario and a complex equivalent is needed:

Lemma 5 ([Van97]). If µ is a positive Borel measure in C, the minimum of
∫
C |Pt(λ)|2dµ(λ) over the residual

polynomials Pt of degree at most t is given by:

P ?(λ) =

∑t
k=0 φk(λ)φk(0)?∑t
k=0 |φk(0)|2

(75)∫
C
|P ?(λ)|2dµ(λ) =

1∑t
k=0 |φk(0)|2

(76)

With φk the orthonormal polynomials w.r.t. µ

Another difference brought by the complex eigenvalues is the inexistence of an equivalent of Favard’s theorem, so
in general the optimal solution, as given by the above lemma, cannot be written as in eq. 4.
This issue can be avoided though if we consider µ to have a radial symmetry.

Proposition 3.3. Let µ be supported on the disk of center C and radius R DC,R. R < C s.t. :

dµ(C + reiθ) =
1

2π
dθdµR(r)

Where µR is a real measure supported in [0, R]. then the optimal method is given by:

yt = yt−1 −
1

C
F (yt−1), βt =

C2t

K2
t,R

Bt = Bt−1 + βt−1 (77)

Where Kt,r =
√

2π
∫ R

0
r2tdµR(r). Moreover:

E[dist(xt,X ?)] =
1

Bt

[DPS20] further shows this method outperforms gradient descent by a constant factor, in average. It also shows
the method converges to an asymptotic version depending only on R and C, much like [SP20] found Polyak as an
universal optimal asymptotic.

In the bilinear game setting, given by eq. 72, we can reduce the problem of finding the optimal method to the
"real case" of minimizing the function 1

2 ||F (x)||2.
If dx ≤ dy we can directly relate the e.s.d’s of A and MMT .

µA(iλ) =

(
1− 2

1 + r−1

)
δ0(λ) +

2|λ|
1 + r−1

µMMT (λ)2 (78)
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Where r = dx
dy
. Notably this setting is simpler than the general normal matrix one because the eigenvalues are purely

imaginary.
As ∇

(
1
2 ||F (x)||2

)
= −A2(x− x?), the optimal method w.r.t. to 1

2 ||F (x)||2 is given by:

Q?t := argmin
Qt(0)=1

∫
Qt(λ)2dµ−A2(λ) (79)

. The optimal polynomial w.r.t. µA is given by P ?2t(λ) = Q?t (−λ2) [DPS20]. This leads to the method:

gt = F (xt − F (xt))− F (xt)

(
=

1

2
||∇F (xt)||2

)
(80)

xt+1 = xt − ht+1gt +mt+1(xt−1 − xt) (81)

Where ht,mt are the optimal gradient step and momentum for MMT .
The parity of the optimal polynomials evidenced above is what gives origin to the intermediary term gt and the
extragradient-like update.

3.3 Stochastic Average Case
[Paq+21; Paq+21] has shown that under a similar framework to [PS20], we can derive the limiting dynamics of
Stochastic Gradient descent and stochastic momentum.
Following [Paq+20], these works suppose a slightly different generative process for the problems:

min
x∈Rd

||Ax− b||2 (82)

b = Ax̃+ η (83)

With η some noise independent to x0 − x̃ and A, E[ηηT ] = R̃2I. It can represent some ’natural’ noise or the case
b /∈ span(A). The SGD iteration corresponds to:

xk+1 = xk −
γ

n
ATP k(Axk − b), P k =

∑
i∈Bk

eie
T
i (84)

Where Bk is the batch at iteration k and γ is the step-size. [Paq+21] embeds this iteration into a continuous time
process, the stochacity due to the incomplete gradient becomes brownian noise in this embedding. Letting n̂ui,t be
the i-th spectral component at iteration t, i.e.:

A = V ΣV T (85)

ν̂i,k = (V T (xt − x̃))i (86)

Then the Doob-Meyer decomposition [Bas96] gives us:

ν̂2
i,t = ν̂2

i,0 +

∫ t

0

Ai,s ds +Mj,t (87)

Ai,s := lim
ε→0

E(ν̂i,t+ε − ν̂i,t|Ft)
ε

(88)

Where s is the Brownian Noise,Mj,. is a martingale and Ai,. is an a.s. negative random process.
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If the relative batch size |Bk|n goes to 0 when n and the dimension go to infinity, the expression for A can be
greatly simplified and we can show, in a strong enough sense, that if d

n → r, then f(xt)− f(x?) →
n→∞

ψ0(t), where
ψ0 is the solution to:

ψ0(t) =
R

2
h1(t) +

R̃

2
(rh0(t) + (1− r))︸ ︷︷ ︸

Noise η

+ γ2r

∫ t

0

h2(t− s)ψ0(s)ds︸ ︷︷ ︸
incomplete gradient

(89)

hk(t) =

∫ ∞
0

λke−2γtλdµ(λ) (90)

[PP21] generalizes this by proposing dimension adjusted versions of Nesterov, sDANA, and Polyak‘s methods,
sDAHB, s.t. E[f(xt)− f(x?)]→ ψ(t) and:

ψ(t) = F (T ) +

∫ t

0

I(t− s)ψ(t) ds (91)

When we let the parameters of sDANA and sDAHB be independent of the problem’s dimension we retrieve the
original methods, and the same equation as for SGD. This shows that in the high dimensional stochastic regime, the
changes in dynamics provided by the momentum, with fixed coefficients, are too shy and don’t improve convergence.

Equations 89 and 91 are of Volterra type, more specifically of renewal type, and have well studied properties.
Indeed for a renewal equation of the form:

Z = z + F ? Z (92)

We consider the Laguerre transform of F :

F̂ (β) =

∫ ∞
0

eβxF (dx) = 1 (93)

The Maltusian Exponent [Asm08] of eq. 92 is the solution to F̂ (β?) = 1. β?, if it is different than 0, determines the
exponential behaviour of the solution Z.
In the case of eq. 89, we have F = γ2rh2(t). To have a convergent solution, we need the Malthusian exponent to be
greater than 0, or differently stated, F̂ (0) < 1:

γ2r

∫ ∞
0

∫ ∞
0

λ2e−2γtλ dµ(λ) dt =
γr

2

∫ ∞
0

λ dµ(λ) < 1 (94)

[Paq+21] further shows that β? ≤ `, where ` is the left edge of µ, so we can define the optimal step size to be s.t.
β? = `. This γ? acts further as phase transition on the dynamics of SGD, i.e ψ(t; γ) behaves differently whether γ is
greater or lower than γ?
We further note that ψ0 can be derived in close form for the Marchenko-Pastur measure because of the connections
between the Laplace and the Stieltjes transforms.

4 Optimization methods

4.1 Nesterov Accelerated Gradient
The Nesterov acceleraion [Nes03] is considered one of the most important methods in optimization. In the convex
case it provably matches a lower bound of O( 1

t2 ) complexity.
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The nesterov iteration, when tuned for eigenvalues in [0, L] is [Paq+20]:

xt+1 = yt −
1

L
∇f(yt) (95)

yt+1 = xt+1 + βt(xt+1 − xt) βt =
t

t+ 3
(96)

It is a first order method and thus has an associated polynomials, but cannot be written as momentum method as in
eq. 4. Indeed, letting α = 1/L, we can show the Nesterov polynomials Pt follow the recurrence:

Pt(λ) = (1 + βt−1)(1− αλ)Pt(λ)− βt−1(1− αλ)Pt−1(λ) (97)

By considering the generating function of the R polynomials defined as Rt((1− u)
1
2 = Pt(u)(1− u)

−t
2 :

G(v, x) =

∞∑
k=0

Rk(v)xk (98)

[Paq+20] show that the polynomials corresponding to recurrence 97 can be written as:

Pt(λ) =
2(1− αλ)

t+1
2

tαλ

(√
1− αλLt(

√
1− αλ)− Lt+1(

√
1− αλ)

)
(99)

4.2 Generalized Chebyshev and Laguerre methods
Being able to write the rates in terms of the expected spectral distribution ties the average case framework to the
field of random matrix theory. Indeed, because of results from this field, certain e.s.d’s are considered more natural
than others. We illustrate this and motivate following considerations with:

Proposition 4.1 (Marchenko Pastur Theorem). Let Xn be a m× n random matrix with Xij i.i.d with variance σ2

and Yn = 1
nXnX

T
n . Let µn be the expected spectrum of Yn, then, as n→∞, mn → r:

µn
weakly−−−−→ max(0, 1− 1

r
)δ0 + µMP

dµMP (λ) =
1

2πσ2

√
(λ+ − λ)(λ− λ−)

rλ

With λ+ = σ2(1 +
√
r)2, λ− = max(0, σ2(1−

√
r)2)

The Marchenko Pastur distribution µMP can be considered a natural first model for e.s.d’s as it arises universally
from i.i.d. noise in the matrix entries. Note there’s no specific distribution of Xij considered.
When r = 1dµMP ∝ λ−1/2

√
λ+ − λ, Though practical e.s.d’s diverge from it, the concentration near 0 is often

verified. [PS20] first derived the optimal method wrt. µMP , and [Paq+20] derived Nesterov’s rates under it. As we
are mainly concerned with being robust, a natural step is to consider the Beta weights dµ(λ) ∝ λξ(L− λ)τ but we
are mainly interested in distributions with similar concentrations near 0, i.e. ξ ≈ −1/2.
The optimal method w.r.t. µ and metric l is associated to a shifted Jacobi polynomial P̃α,βt with β = ξ+ l+ 1, α = τ .
When α = β = −1/2 we retrieve the Chebyshev Method [HS+52], so we call this the Generalized Chebyshev Method.
We’ll also consider the Laguerre method, which is optimal w.r.t. dµ(x) = xαe−x

Γ(α+1) , taking α as a parameter. This
method is proposed to optimize non-smooth functions
Both these methods are generalizations of one that have been proposed in [PS20]. We derive the coefficients
associated to these methods in appendix B.
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Remark 6. The Generalized Chebyshev also takes the largest eigenvalue L as a parameter, but the rates we’ll show
are robust to an overestimation of L

5 Robust Average Case Rates
We will establish our assumption over the spectral distributions. It effectively allows us to parametrize all of our
distributions of interest in a way that characterize the asymptotic convergence, diving them into equivalence classes .

Assumption 1. We will write ντ,ξ for a continuous distribution supported in (0, L] s.t. ν′τ,ξ(x) > 0 for x ∈ [0, L],
dντ,ξ = Θ(λξ) near 0 and dντ,ξ = Θ((L− λ)τ ) near L.

We argue this is a much more mild assumption to be made than the exact spectral distribution and it covers any
distribution modeling a smooth convex problem.
The ξ works as a measure of how close we are to the worst case scenario, as it approaches −1. Samples in finite
dimension, of distributions with high values of ξ, will work as strongly convex functions in practice.

We show that ντ,ξ indeed behaves like an equivalence class when considering the asymptotics of the conver-
gence of a Jacobi method: only the concentrations near the edge matter. We do this by singling out from each of
these classes the beta distributions for which we can compute the rates, then show the rates to be the same inside ντ,ξ.

Theorem 7. A Generalized Chebyshev Method with parameters (α, β) applied to a problem with e.s.d. as in
assumption 1 has rates:

E[f(xt)− f(x?)] ∼ L · Cα,β1,ν


t−1−2β if α < τ + 1/2 and β < ξ + 3/2
t−2(ξ+2) log t if α = τ + 1/2 and β = ξ + 3/2
t2(max{α−β−τ,−ξ−1}−1) if α > τ + 1/2 or β > ξ + 3/2

(100)

E[||∇f(xt)||22] ∼ L2 · Cα,β2,ν


t−1−2β if α < τ + 1/2 and β < ξ + 5/2
t−2(ξ+3) log t if α = τ + 1/2 and β = ξ + 5/2
t2(max{α−β−τ,−ξ−2}−1) if α > τ + 1/2 or β > ξ + 5/2

(101)

Where Cα,βν is a distribution dependent constant.

Theorem 8 shows that a proper choice of α, β can indeed make the Jacobi polynomial asymptotically optimal
w.r.t. to any ντ,ξ.

Theorem 8. Let ν follow assumption 1. The optimal asymptotic rate for E[f(xt)−f(x?)] is t−2(ξ+2) and is attained
by the Chebyshev Method with parameters (τ, ξ + 2).
The optimal rate for E[||∇f(xt)||22] is t−2(ξ+3) and is attained by the Chebyshev Method with parameters (τ, ξ + 3).

For the function value (l = 1), we find rates that approach t−2 as ξ → −1, showing the worst case as a limit
(over the considered distribution) on the average case.

Remark 9. We can contextualize our results on the field of orthogonal polynomials as asymptotics on the values of
the Christoffel Functions at 0 [Tot05]:

λt(µ, x) = inf
Pt(x):=1,deg(Pt)≤t

∫
P 2
t dµ =

( t∑
k=0

pk(x;µ)2
)−1

(102)

For the equivalence classes ντ,ξ
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Figure 7: Colormap for the function value rates for the Marchenko Pastur distribution. The color represents the
negative exponent, e.g. lower is better.

We remark that the above theorems imply that, at least asymptotically, the Jacobi method is robust for a
suboptimal choice of parameters up to 1/2 below the optimal choice of β and infinitely above.
For completeness, we also derive worst case rates for the Jacobi method:

Proposition 5.1. Let f be a convex, L-smooth quadratic function. Then, For the Generalized Chebyshev Method
with parameters (α, β) we have:

f(xt)− f(x?) ≤ C1L

 t2(α−β) if α > β − 1
t−1−2β , if α ≤ β − 1 β ≤ 1

2
t−2, if α ≤ β − 1 β ≥ 1

2

(103)

||∇f(xt)− f(x?)|| ≤ C2L
2

 t2(α−β) if α > β − 2
t−1−2β , if α ≤ β − 2 β ≤ 3/2
t−4, if α ≤ β − 2 β ≥ 3/2

(104)

For the function value (l = 1) and a reasonable choice of α, β this means effectively that the worst case rates are
t−2

[Nes03] has shown that the Nesterov matches up to a a constant factor a lower bound on the worst case complexity
of non strongly convex problems. A natural question is if this performance would translate to good average case
rates.
We’ll extend [Paq+20] proof for the Nesterov method under the MP distribution

Theorem 10. Let ν as in assumption 1, then, for the Nesterov method:

E[f(xt)− f(x?)] ∼ C ′1,ν
{ t−2(ξ+2) if ξ < −1/2
t−3 log t if ξ = −1/2
t−(ξ+7/2) if ξ > −1/2

E[||∇f(xt)||22] ∼ C ′2,νt−(ξ+9/2) (105)

The optimality gap of nesterov is tξ + l − 1/2, when ξ + l > 1/2, log t when ξ + l = 1/2 and 0 otherwise. This
shows that Nesterov is almost optimal when the concentrations near 0 are relatively high, i.e. low ξ
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Theorem 11. Let ν as in assumption 1, then for gradient descent:

E[f(xt)− f(x?)] = Θ(t−(ξ+2)) E[||∇f(xt)||22] = Θ(t−(ξ+3)) (106)

Observe, for the function value, that we find the t−2 rates for Nesterov and t−1 for Gradient Descent when
ξ → −1

(τ, ξ)/Method Chebyshev ( 1
2 ,

5
2 ) Chebyshev ( 1

2 ,
3
2 ) Nesterov G.D.

( 1
2 ,

1
2 ) t−5 t−4 t−4 t−

5
2

( 1
2 ,
−1
2 ) t−3 t−3 t−3 log t t−

3
2

Table 1: Comparison of asymptotic rates for the function-value for different methods an (τ, ξ) values

Lastly, we consider the optimal rates for a Gamma distribution.

Theorem 12. Let α > −1 and µα be a Gamma distribution, i.e. dµα(x) = xαe−x

Γ(α+1) . The optimal rates are given by
the Laguerre method of appropriate tuning and:

E[f(xt)− f(x?)] = Θ(t−(α+2)) (107)

Note that this result does not have the same universality of the others because of the non-compacity of the
distribution’s support.
These rates are contrasted to the worst case lower bound on the optimization of non-smooth functions by first order
methods, which gives:

f(xk)− f(x?) ≥ C√
t

These rates are not found when α→ −1, indicating that the worst case is specially pessimistic in this scenario.

6 Experiments
We synthesize the e.s.d’s either by means of the Marchenko Pastur that enables us to simulate (τ, ξ) values of
(1/2, 3/2) and (1/2, 5/2). Other values are simulated by sampling from the corresponding Beta distribution and
applying a random rotation to the diagonal matrix comprising those samples.
Because we work with the asymptotic rates on the infinite dimensional case, i.e. we take d→∞ and then t→∞,
they are representative of the experiments on the regime t < d.
Our theoretical estimates for the Nesterov method and Gradient Descent are precise under the approximate range
−1 < ξ < 0, distributions with higher ξ need many samples otherwise they behave as strongly convex functions.

The same isn’t true for the GCM. If β < β? or ξ is low the empirical findings diverge from the theoretical. We
believe this is due to numerical instability under these regimes as the metrics also have much larger variance than in
the other regimes. This shown in appendix D.

The GCM with β > β? perform corresponding to the theory, and it’s non-asymptotically very close to the
performance of β?. High values of β also perform very well on non-synthetic data, suggesting in practice we should
use these values.
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Figure 8: Rates for a synthetic problem, simulating the Marchenko Pastur distribution. Left: function value. Note
that both tunings of the GCM achieve performance in function value very close to the one of Conjugate Gradient,
which is optimal for every draw of the problem. Right : gradient norm

Figure 9: Spectrum and gradient norm rates for regression problems. Left: CIFAR-10 Inception features Right :
MNIST features. Here we choose to compare gradient norms as the minimum function value is not known. The
properly tuned GCM achieves remarkable performance under these non-synthetic spectrum’s.
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Figure 10: Comparison between experiments run on synthetic Beta distribution and theoretical asymptotic. Y-axis
is function value

7 Conclusion
From a practical standpoint, we have proposed f.o.m., the Generalized Chebyshev method which shows remarkable
performance on real world datasets.
From a theoretical standpoint, we’ve shown the Nesterov method, which is easier to implement and more numerically
stable, to be very close to the asymptotic optimum under some natural assumptions over the data, namely a
concentration of eigenvalues around 0 similar to the Marchenko-Pastur measure. This adds to the theoretical
understanding of why Nesterov acceleratio is such a good method in pratice.

We have shown that the average case asymptotic convergence of the better known f.o.m. depend only on the
concentrations of the problem’s eigenvalue near the edges. We have shown these rates to be representative of the
practical performance of the algorithms, and retrieve the classical worst case rates as limits of the average case

Finally, we have characterized the optimum average case convergence under the scenario analogous to the three
usual hypothesis in worst-case convergence analysis.
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Regime Worst case Average case

Smooth Strongly convex
(

1−Θ( 1√
κ

)
)t (

1−Θ( 1√
κ

)
)t

Smooth convex 1
t2

1
t2ξ+4

Non-smoooth convex 1√
t

1
tα+2

Table 2: Comparison between function value worst-case and average case convergence. κ is the condition number in
the smooth strongly convex case. In the smooth convex case ξ is the concentration of eigenvalues around 0 and in
the non-smooth case we consider dµ ∝ λαe−x

We consider analysing the Generalized Chebyshev methods and the average convergence in problems beyond
quadratics minimization the main follow-up direction to our work. We conjecture one can show local convergence,
and local average case rates, for general convex functions by a similar method to [WLA21], which has shown the size
of the cnvergent neighborhood for the Polyak method for general strongly convex smooth functions.
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A Proofs of Section 2
Theorem 3.1. Let xt be generated by a first-order method associated to the polynomial Pt, µ the e.s.d. of H and
E[(x0 − x?)(x0 − x?)T ] = R2I Then we can write the convergence metrics at time step t as:

E[‖xt − x?‖2] = R2

∫
P 2
t (λ)dµ(λ) (45)

E[f(xt)− f(x?)] = R2

∫
P 2
t (λ)λdµ(λ) (46)

E[||∇f(xt)||22] = R2

∫
P 2
t (λ)λ2dµ(λ) (47)

Proof. We remark that by the definition of the expected spectral distribution µ of H, we have for continuous g:

EH [g(tr(H))] =

∫
g(λ) dmu(λ) (108)

We know that xt −x? = Pt(H)(x0 −x?). We can write ||xt −x?||2 in terms of a trace and use the independence of
H and x0 − x? to connect it to the e.s.d.:

E||xt − x?||2 = E[tr((x0 − x?)TPt(H)2(x0 − x?))] (109)

= EH,x0−x? [tr(Pt(H)2(x0 − x?)(x0 − x?)T ] (110)

= EH
[
Pt(H)2Ex0−x? [(x0 − x?)(x0 − x?)T ])

]
(111)

= R2EH [Pt(tr(H))2] = R2

∫
Pt(λ)2 dµ(λ) (112)

For the gradient and function value the reasoning is the same by noticing:

E[f(xt)− f(x?)] = E[tr((x0 − x?)TPt(H)HPt(H)(x0 − x?))] (113)

= EH [(λPt)(tr(H))2] (114)

Where λPt is also a polynomial. As ∇f(xt) = H(xt − x?)

E||∇f(xt))||2 = E[tr((x0 − x?)TPt(H)H2Pt(H)(x0 − x?))] (115)

= EH [(λ2Pt)(tr(H))2] (116)

Proposition 3.2. [PS20] Let P ?t be defined as

P ?t := arg minPt(0)=1

∫
P 2
t (λ)λldν(λ) (53)

then (P ?t ) is the family of residual orthogonal polynomials w.r.t. to λl+1dν

Proof. We differentiate the expression for the metrics w.r.t. to the coefficients of the polynomials:

d

dak

(∫
λlP 2

t (λ)dµ(λ)

)
=

∫
λl

d

dak

(
t∑

k=0

akλ
kPt(λ)

)
dµ(λ) =

= 2 ·
(∫

λl+kPt(λ)dµ(λ)

)
= 0
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This means that Pt(λ) is orthogonal to any polynomial of degree t− 1 w.r.t to the intern product 〈., .〉λl+1dµ

B Coefficients of the Jacobi Method
We’ll first state two lemmas that allow us to construct the optimal polynomials. With them in hand the procedure
is trivial.

Lemma 13. Let (P̃t) be a family polynomials following

P̃t(λ) = (αt + βtλ)P̃t−1)λ) + γtP̃t−2(λ)

With P̃0 a constant polynomial and P̃t 6= 0,∀t. Then:

Pt(λ) = (at + btλ)Pt−1(λ) + (1− at)Pt−2(λ) (117)

Is the recurrence for Pt(λ) = P̃t(λ)/P̃t(0). With:

at = δtαt (118)
bt = δtβt (119)
δt = (αt + γtδt−1) (δ0 = 0) (120)

The proof of this is presented in [PS20]. Further, we know how to compute the recurrence for the polynomials of
a shifted distribution:

Lemma 14. Let (P̃t) be a family polynomials orthogonal w.r.t following

P̃t(λ) = (αt + βtλ)P̃t−1(λ) + γtP̃t−2(λ (121)

And define polynomials Pt s.t. :
Pt(m(λ)) = P̃t(λ)

With m(λ) = aλ+ b a non singular affine transform. Then Pt follows a recurrence like in eq. (121), with:

α′t = αt + bβt (122)
β′t = aβt (123)
γ′t = γt (124)

The lemma is self-evident by considering eq. (121) with argument m−1(λ)

Then to get the recurrence relation for the residual polynomial w.r.t xβ(L− x)α, we begin by the standard jacobi
polynomials, which are orthogonal w.r.t (1− x)α(1 + x)β and follow a recurrence according to αt, βt, γt below, shift
the distribution according to η(x) . . ., and then transform to the residual ones:

Proposition B.1. The residual polynomials w.r.t. dµ(λ) = λβ(L− λ)α, follow the recurrence:

Pt(λ) = (at + btλ)Pt−1(λ) + (1− at)Pt−2(λ)
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With:

αt =
(α2 − β2)(2n+ α+ β + 1)

2(n+ 1)(n+ α+ β + 1)(2n+ α+ β)
(125)

βt =
(2n+ α+ β + 1)(2n+ α+ β + 2)

(2(n+ 1)(n+ α+ β + 1)
(126)

γt = − (n+ α)(n+ β)(2n+ α+ β + 2)

(n+ 1)(n+ α+ β + 1)(2n+ α+ β)
(127)

ãt = αt − βt (128)

b̃t =
2

L
βt (129)

δt =
1

ãt + ctδt−1
(δ0 = 0) (130)

at, bt = δtãt, δtb̃t (131)

C Proofs of section 3
In the following we’ll consider shifted versions of the spectral distributions. This shift is written as an affine
transform m(λ) : [0, L] → [−1, 1] because most results in the theory of orthogonal polynomials are stated in
terms of distributions supported in [−1, 1]. This can be seen as an additional layer of abstraction because the
quantities evaluated with the shifted distributions and polynomials are proportional, i.e. if Pt(x) = P̃t(m(x)) and
µ′(x) = µ̃′(m(x)): ∫

P 2
t (x)µ′(x) dx ∝

∫
P̃ 2
t (x)µ̃′(x) dx (132)

So all the asymptotics are the same and we consider ν restricted to [−1, 1]. The Jacobi polynomials Pα,βt are
orthogonal w.r.t; dµ(x) = (1 − x)α(1 + x)β , we note that most results give them in terms of normalization
P̃α,βt (−1) = (−1)t

(
t+β
t

)
. We’l write P̃α,βt for this normalization and Pα,βt for the residual polynomials

Theorem 7. A Generalized Chebyshev Method with parameters (α, β) applied to a problem with e.s.d. as in
assumption 1 has rates:

E[f(xt)− f(x?)] ∼ L · Cα,β1,ν


t−1−2β if α < τ + 1/2 and β < ξ + 3/2
t−2(ξ+2) log t if α = τ + 1/2 and β = ξ + 3/2
t2(max{α−β−τ,−ξ−1}−1) if α > τ + 1/2 or β > ξ + 3/2

(100)

E[||∇f(xt)||22] ∼ L2 · Cα,β2,ν


t−1−2β if α < τ + 1/2 and β < ξ + 5/2
t−2(ξ+3) log t if α = τ + 1/2 and β = ξ + 5/2
t2(max{α−β−τ,−ξ−2}−1) if α > τ + 1/2 or β > ξ + 5/2

(101)

Where Cα,βν is a distribution dependent constant.

Proof. We’ll prove that for any α and β, ξ, τ > −1, l > 0 and ν following Assumption 1, we have:

∫
Pα,βt (x)2xldντ,ξ−l(x) ∼ LlCα,βν


t−1−2β if α < τ + 1/2 and β < ξ + 1/2
t−2(ξ+1) log t if α = τ + 1/2 and β = ξ + 1/2
t2(max{α−β−τ,−ξ}−1) if α > τ + 1/2 or β > ξ + 1/2
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We’ll first show this result for the Beta weights, then show that distributions with the same concentration behave
similarly.
The normalization of P̃α,βt is s.t.[ [Sze75] (4.3.3)]:∫ 1

−1

P̃α,βt (x)(1− x)α(1 + x)β dx =
2α+β+1

2n+ α+ β + 1

Γ(n+ α+ 1)Γ(n+ β + 1)

Γ(n+ 1)Γ(n+ α+ β + 1)
= Θ(t−1) (133)

The residual polynomials then are s.t. |Pα,βt | = Θ(t−β)P̃α,βt .
The following result (Exercise 91, Generalisation of 7.34.1) from [Sze75]:

Lemma 15. We have: ∫ 1

0

(1− x)τPα,βt (x)2dx ∼ Θ(hατ ) (134)

hατ :=

 t2(α−τ−1) if α > τ + 1/2
t−1 log t if α = τ + 1/2
t−1 if α < τ + 1/2

(135)

Noting that P̃α,βt (x) = (−1)tP̃ β,αt (−x), we can write:∫ 1

−1

P̃t(x)2(1− x)τ (1 + x)ξdx = Θ

(∫ 1

0

(1− x)τ |P̃α,βt (x)|2dx
)

+ Θ

(∫ 1

0

(1− x)ξ|P̃ β,αt (x)|2dx
)

(136)

We can then show our result for dντ,ξ−l(x) = xξ−l(L− x)α by carefully considering each of the cases on Lemma 15
and the maximum of each term in eq. 136, and an added t−2β from the different normalization. With this, we have
the wanted result for the Beta weights
It remains to show: ∫ 1

0

P̃α,βt (x)2 dντ,ξ(x) = Θ

(∫ 1

0

(1− x)τ P̃α,βt (x)2dx

)
(137)

And the rest follows from the same arguments. We do this with the help of this lemma shown in [Van95] relating to
the weak convergence of the orthogonal polynomials:

Lemma 16. Let µ be a measure and (pt) it‘s family of orthonormal polynomials s.t. pt follow the recurrence:

xpt(x) = atpt+1(x) + btpt(x) + at−1pt−1(x)

and at, bt converge respectively to a, b. Then for any f continuous and bounded:∫
f(x)p2

t (x)dµ(x)→ 1

π

∫ 1

−1

f(x)√
1− x2

dx (138)

Let ε s.t.
x ≥ 1− ε⇒ |dντ,ξ −A(1− x)τ | ≤ B(1− x)τ (139)
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We observe that for 0 < x < 1− ε, f(x) =
dντ,ξ

(1−x)α(1+x)β
is bounded.

We get from an application of 16, and the observation that P̃α,βt = Ntpα,βt , with Nt = Θ(t−1/2):∫ 1

0

(1− x)τ P̃α,βt (x)2 dx︸ ︷︷ ︸
Θ(hατ )

=

∫ 1−ε

0

(1− x)τ P̃α,βt (x)2 dx︸ ︷︷ ︸
Θ(t−1)

+

∫ 1

1−ε
(1− x)τ P̃α,βt (x)2 dx⇒ (140)

∫ 1

1−ε
(1− x)τ P̃α,βt (x)2 dx = Θ(hατ ) (141)

∫ 1

0

P̃α,βt (x)2 dντ,ξ(x) =

∫ 1−ε

0

P̃α,βt (x)2f(x)(1− x)α(1 + x)β dx)︸ ︷︷ ︸
Θ(t−1)

+Θ


∫ 1

1−ε
(1− x)τ P̃α,βt (x)2 dx︸ ︷︷ ︸

Θ(hατ )

 (142)

Theorem 8. Let ν follow assumption 1. The optimal asymptotic rate for E[f(xt)−f(x?)] is t−2(ξ+2) and is attained
by the Chebyshev Method with parameters (τ, ξ + 2).
The optimal rate for E[||∇f(xt)||22] is t−2(ξ+3) and is attained by the Chebyshev Method with parameters (τ, ξ + 3).

Proof. We’ll prove that for τ, ξ > −1 If α = τ and β = ξ + l + 1 (i.e., are optimal), the rate of convergence reads

min
Pt(0)=1

∫
P 2
t (λ)λldν(λ) = Θ

(∫ l

0

P̃α,βt (λ)2(L− λ)τλξ+l dλ

)
= Θ(t−2(ξ+l+1)) (143)

Showing the second equality is easy by considering theorem 7, and that is further the minimum asymptotic rate for
the Beta distribution.
As P̃α,βt has the same rate on ν as on the Beta distribution , the minimum rate for ν is lower bounded by the r.h.s.
We argue that, setting P νt = pν

pνt (0) the optimal residual and orthonormal polynomials and µτ,ξ the Beta distribution
w.r.t, P νt must have the same rate on ν as it does on ν. Indeed, setting ε1, ε2 as in eq. 139, we argue:∫ 1

1−ε2
P νt (x)2dν(x) =

(
Θ

∫ 1

1−ε2
P νt (x)2dµ(x)

)
(144)∫ −1+ε1

−1

P νt (x)2dν(x) = Θ

(∫ −1+ε1

−1

P νt (x)2dµ(x)

)
(145)∫ 1−ε2

−1+ε1

P νt (x)2dν(x) = Θ

(∫ 1−ε2

−1+ε1

P νt (x)2dµ(x)

)
= Θ

(
1

pνt (−1)2

)
(146)

(147)

Where the first two equations come from the fact that ν = Θ(µ) near −1 and 1 and the third from lemma 16.
This effectively upper bounds the rates on ν because the rates of P νt on µτ,ξ can’t be lower than −2(ξ + 1).
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Proposition 5.1. Let f be a convex, L-smooth quadratic function. Then, For the Generalized Chebyshev Method
with parameters (α, β) we have:

f(xt)− f(x?) ≤ C1L

 t2(α−β) if α > β − 1
t−1−2β , if α ≤ β − 1 β ≤ 1

2
t−2, if α ≤ β − 1 β ≥ 1

2

(103)

||∇f(xt)− f(x?)|| ≤ C2L
2

 t2(α−β) if α > β − 2
t−1−2β , if α ≤ β − 2 β ≤ 3/2
t−4, if α ≤ β − 2 β ≥ 3/2

(104)

Proof. rates] We’ll prove that: supx∈[0,L] x
lPα,βt (x)2 = O(Lltv(α,β,l)). Where:

v(α, β, l) =

 2(α− β) if α > β − l
−1− 2β, if α ≤ β − l β ≤ l − 1

2
−2l, if α ≤ β − l β ≥ l − 1

2

(148)

From [Sze75], Theorem 7.32.2, if θ < π
2 :

P̃α,βt (cos θ) =

 O(t−1/2) if α < − 1
2

O(tα) if α ≥ − 1
2 , 0 ≤ θ ≤ ct

−1

θ−α−1/2O(t−1/2) if α ≥ − 1
2 , θ > ct−1

(149)

We observe that, from the symmetry of the jacobi polynomials:

sup
x∈[0,L]

xlPα,βt (x)2 = Θ

(
max

{
sup
x∈[0,1]

Pα,βt (x)2, sup
x∈[0,1]

(1− x)lP β,αt (x)2

})
(150)

The (1 − x)l term, corresponds to (2 sin( θ2 ))l in the variable θ, which is O(θ2l). The rest follows from carefully
considering the expressions given by eq. 149.

Theorem 10. Let ν as in assumption 1, then, for the Nesterov method:

E[f(xt)− f(x?)] ∼ C ′1,ν
{ t−2(ξ+2) if ξ < −1/2
t−3 log t if ξ = −1/2
t−(ξ+7/2) if ξ > −1/2

E[||∇f(xt)||22] ∼ C ′2,νt−(ξ+9/2) (105)

Proof. We’ll prove: ∫ 1

0

PNes
t (λ)2λl dντ,ξ−l ∼ C ′ν

{ t−2(ξ+1) if 0 < ξ < 1/2
t−3 log t if ξ = 1/2
t−(ξ+5/2) if ξ > 1/2

(151)

[Paq+20] has shown that the nesterov polynomials Pt are asymptotically, in t:

Pt(λ) ∼ 2J1(t
√
αλ)

t
√
αλ

e−αλt/2 (152)

In the sense that: ∫ 1

0

ul
[

˜P 2
t (u)− 4J2

1 (t
√
u)

t2u
e−ut

]
4 dµMP (u) = O(t−(l+25/12)) (153)
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The arguments can be easily used to show that such an integral is O(t−(α+l+31/12)) when evaluated wrt a general
dµ s.t µ′ = Θ(λα) near 0.
We can thus consider our integral of interest substituting PNes

t by it’s Bessel asymptotic and dividing it into three
regions, i.e. [0, 1] = [0, εt ] ∪ [ εt ,

ε√
t
] ∪ [ ε√

t
, 1] corresponding to two different regimes for the Bessel function. The first

region will give us the asymptotic and the others we’ll bound.
We consider first, for some ε > 0: ∫ ε√

t

ε
t

uξ
4J2

1 (t
√
u)

t2u
e−ut du (154)

We note the asymptotic for J2
1 :

J2
1 (
√
tv) ∼ 1

π
√
tv

(1 + cos(2
√
tv + 2γ)) (155)

Doing the change of variable v = tu, and identifying the upper limit of the interval, which is εt1/2 to ∞:∫ ε√
t

ε
t

uξ
4J2

1 (t
√
u)

t2u
e−ut du = Θ

(
t−2−ξ

∫ ∞
ε

vξ−1J2
1 (
√
tv)e−v dv

)
(156)

= Θ

(
t−2−ξ

∫ ∞
ε

vξ−1 1

π
√
tv
e−v dv

)
(157)

= Θ

t− 5
2−ξ

∫ ∞
ε

vξ−
3
2

1

π
√
tv
e−v dv︸ ︷︷ ︸

Γ(ξ− 1
2 ,ε)

 (158)

Where the cosinus term goes to 0 from the Riemann-Lebesgue lemma and Γ is the incomplete Gamma function.
The term corresponding to the interval [εt−1/2, 1] is exponentially small. Indeed, because of the exponential e−ut it
is O(e−ε

√
t). This shows that the integral concentrates in a region that is closer and closer to 0 and that only the

behaviour of the distribution near 0 matters.We have for the [0, εt ] region, doing the change of variables v = t2u:∫ ε
t

0

uξ
4J2

1 (t
√
u)

t2u
e−ut du = Θ

(
t−2(ξ+1)

∫ tε

0

vξ
J2

1 (
√
v)

v
e−

v
t dv

)
(159)

And the e
−v
t is Θ(1). We have the following Bessel asymptotics:

J2
1 (
√
v)

v
∼ 1

4
, v → 0 (160)

J2
1 (
√
v)

v
= O(v−3/2), v →∞ (161)

So we divide this integral aswell:

t−2(ξ+1)

∫ tε

1

vξ
J2

1 (
√
v)

v
e−

v
t dv = Θ

(
t−2(ξ+1)

∫ tε

ε

vξ−
3
2 dv

)
= Θ

(
Iξ(t)t

−ξ− 5
2

)
(162)

t−2(ξ+1)

∫ 1

0

vξ
J2

1 (
√
v)

v
e−

v
t dv = Θ

(
t−2(ξ+1)

∫
0

ε1vξ dv

)
= Θ

(
t−2(ξ+1)

)
(163)

Where Iξ(t) = log t if ξ = 1
2 and 1 otherwise.The nesterov rate is then Iξ(t)t

−ξ− 5
2 if ξ ≥ 1

2 and t−2(ξ+1) if
0 < ξ < 1

2
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Theorem 11. Let ν as in assumption 1, then for gradient descent:

E[f(xt)− f(x?)] = Θ(t−(ξ+2)) E[||∇f(xt)||22] = Θ(t−(ξ+3)) (106)

Proof. Considering that PGD
t (λ) = (1− λ

L )t we’ll prove :∫ 1

0

(1− λ)2tλl dντ,ξ−l = Θ(t−(ξ+l+1) (164)

We know, for the Beta weights, that:∫ 1

0

(1− λ)2t+τλξ+l dλ =
Γ(l + ξ + 1)Γ(2t+ τ + 1)

Γ(2t+ l + ξ + τ + 2)
= Θ(t−(ξ+l+1)) (165)

We can indentify this asymptotic to the interval
∫ ε

0
for any ε because:∫ 1

ε

(1− λ)2t+τλξ+l dλ = O((1− ε)2t) (166)

Then: ∫ 1

ε

(1− λ)2tλl dντ,ξ−l = O((1− ε)2t) (167)∫
0ε(1− λ)2tλl dντ,ξ−l = Θ

(∫ ε

0

(1− λ)2t+τλξ+l dλ

)
= Θ(t−(ξ+l+1)) (168)

Theorem 12. Let α > −1 and µα be a Gamma distribution, i.e. dµα(x) = xαe−x

Γ(α+1) . The optimal rates are given by
the Laguerre method of appropriate tuning and:

E[f(xt)− f(x?)] = Θ(t−(α+2)) (107)

Proof. Let Lαt be the Laguerre polynomials with the usual normalization [Sze75]:∫
Lαt (x)2dµα(x) = Lαt (0) =

(
n+ α

n

)
(169)

We further know [[Sze75] (5.1.13)]:
t∑

k=0

Lαt (x) = Lα+1
t (x) (170)

Thus, letting Pαt be the residual laguerre polynomial, we consider:

E[f(xt)− f(x?)] =

∫
Pα+2
t (λ)2dµα+1(λ) =

(
t+ α+ 2

t

)−2 ∫
Lα+2
t dµα+1(λ)

=

(
t+ α+ 2

t

)−2 t∑
k=0

[∫
Lα+1
k (λ)dµα+1(λ)

]
=

(
t+ α+ 2

t

)−2 t∑
k=0

(
k + α+ 1

k

)

=

(
t+ α+ 2

t

)−2(
t+ α+ 2

t

)
=

(
t+ α+ 2

t

)−1

= Θ(t−(α+2))

(171)
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D Additional Experiments

Figure 11: Empirical vs Theoretical function-value performance for GCM(α?, β?) . Red lines are given by numerical
integration, shades are minimum and maximum values under 10 runs

Figure 12: Empirical vs Theoretical function-value performance under Marchenko Pastur distribution. Red lines are
given by numerical integration,shades are minimum and maximum values under 10 runs

We note that in the regimes where the empirical average performance doesn’t match the theoretical one, we can still
find samples of problems who do match. This and the much larger variance on the function-value, this discrepancy
is due to numerical unstability in these regimes.
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